An experimental study of the regeneration of diesel particulate filter (DPF) was conducted through the use of a self-designed Non-thermal plasma (NTP) injection system with an experimental temperature of 20–300 °C, with atmospheric air being used as the gas source. The results revealed that the PM could be broken down into CO and CO2 by NTP, through a discharge reaction of the NTP reactor. As the temperature increases, the mass of C1 (mass of C in CO) showed an overall declining trend. Interestingly, the mass of C2 (mass of C in CO2) and C12 (the sum of C1 and C2) both showed an initial increase, followed by a decrease. The peak mass of C12 appears at 150 °C, and both axial and radial temperature gradients are less than the limit of DPF temperature gradient at this temperature. In conclusion, DPF can be regenerated by the NTP technology at a lower temperature, which can aid in the avoidance of thermal damage of DPF. The technology boasts a great advantage in adopting atmospheric air as its gas source, which can not only reduce costs, but also is convenient.