In a preceding paper [Comput. Phys. Commun. 184 (1): 51–59, 2013], we revisited the problem of calculating Coulomb Green’s function and image potential near a planar diffuse interface within which the dielectric permittivity of the inhomogeneous medium changes continuously along one Cartesian direction in a transition layer between two dissimilar dielectric materials. In the present paper, we consider a cylindrical diffuse interface within which the dielectric permittivity changes continuously along the radial direction instead. First we propose a specific cylindrical diffuse interface model, termed the quasi-harmonic diffuse interface model, that can admit analytical solution for the Green’s function in terms of the modified Bessel functions. Then and more importantly we develop a robust numerical method for building Green’s functions for any cylindrical diffuse interface models. The main idea of the numerical method is, after dividing a diffuse interface into multiple sublayers, to approximate the dielectric permittivity profile in each one of the sublayers by one of the quasi-harmonic functional form rather than simply by a constant value as one would normally do. Next we describe how to efficiently compute well-behaved ratios, products, and logarithmic derivatives of the modified Bessel functions so as to avoid direct evaluations of individual modified Bessel functions in our formulations. Finally we conduct numerical experiments to show the effectiveness of the quasi-harmonic diffuse interface model in overcoming the divergence of the image potential, to validate the numerical method in terms of its accuracy and convergence, and to demonstrate its capability for computing Green’s functions for any cylindrical diffuse interface models.
Read full abstract