Dickkopf-1 (DKK-1) may be involved in inflammatory response and secondary brain injury after acute brain injury. We gauged serum DKK-1 levels and further assessed its correlation with disease severity and investigated its predictive value for 90-day prognosis in patients with spontaneous intracerebral hemorrhage (sICH). Serum DKK-1 levels were measured in 128 sICH patients and 128 healthy controls. The severity of sICH was assessed using the Glasgow Coma Scale (GCS) scores and hematoma volumes. Poor prognosis was referred to as a Glasgow Outcome Scale (GOS) score of 1-3 at 90days after stroke. Multivariate analysis was performed to identify associations of serum DKK-1 levels with disease severity, early neurological deterioration (END) and poor prognosis. Receiver operating characteristic curve (ROC) was built to investigate the prognostic predictive capability. The serum DKK-1 levels of patients were significantly higher than those of controls (median, 4.74ng/mL versus 1.98ng/mL; P < 0.001), and were independently correlated with hematoma volumes (ρ = 0.567, P < 0.001; t = 3.444, P = 0.001) and GCS score (ρ = -0.612, P < 0.001; t = -2.048, P = 0.043). Serum DKK-1 significantly differentiated patients at risk of END (area under ROC curve (AUC), 0.850; 95% confidence interval (CI), 0.777-0.907; P < 0.001) and poor prognosis (AUC, 0.830; 95% CI, 0.753-0.890; P < 0.001), which had similar prognostic ability, as compared to GCS scores and hematoma volumes. Subsequent Logistic regression model affirmed that GCS score, hematoma volume, and serum DKK-1 levels were independently associated with END and poor prognosis at 90days after sICH. The models, which contained them, performed well using ROC curve analysis and calibration curve analysis. Serum DKK-1 levels are markedly associated with disease severity, END and 90-day poor prognosis in sICH. Hence, serum DKK-1 is presumed to be used as a potential prognostic biomarker of sICH.