Many industries produce large amounts of glycerol-based wastewater, which always contains hazardous organic chlorides. Compared with complicated biological treatments or physical adsorption, membrane separation decreases the cost and saves energy. Strong swelling of traditional thin-film composite (TFC) membranes influence the performance in the separation of organic molecules. Here we prepared TFC membranes with an acrylamide-grafted PAN support layer to copolymerize with m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The link of separative layer and support layer was created like a zipper stitching to enhance the stability and resistance for the removal of organic molecules. An aquatic grass-like layer of acrylamide enlarges the surface area and hydrophilicity with superior separation performances (15.8 LMH bar−1 flux, 72.0% rejection of dichloropropanol (DCP) and 64.6% rejection of glycerol (Gl)). The trade-off upper bound was improved to a high level. We also established the simulations of evaporation using Aspen Plus and mathematical models of reverse osmosis to calculate the energy consumption corresponding to the recycle of glycerol-based wastewater. The experimental and theoretical results illustrate the advantages of acrylamide-grafted TFC membranes in the ap-plications to concentrate organic solutes and treat wastewater.
Read full abstract