Abstract

Synthesizing epichlorohydrin (ECH) from dichloropropanol (DCP) is a complicated reaction due to the partial decomposition of ECH under harsh conditions. A microchemical system can provide a feasible platform for improving this process by conducting a separation once full conversion has been achieved. In this work, referring to a common DCP feed used in industry, the reaction performance of mixed DCP isomers with NaOH in the microchemical system on various time scales was investigated. The operating window for achieving high conversion and selectivity was on a time scale of seconds, while the side reactions normally occurred on a time scale of minutes. Plenty of Cl− ions together with a high temperature were proved to be critical factors for ECH hydrolysis. A kinetic study of alkaline mediated ECH hydrolysis was performed and the requirements for an improved ECH synthesis were proposed by combining quantitative analysis using a simplified reaction model with experimental results on the time scale of minutes. Compared with the conventional distillation process, this new strategy for ECH synthesis exploited microchemical system and decoupled the reaction and separation with potentials of higher productivity and better reliability in scaling up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.