The declining availability of cheap fossil-based resources has sparked growing interest in the sustainable biosynthesis of organic acids. l-Malic acid, a crucial four-carbon dicarboxylic acid, finds extensive applications in the food, chemical, and pharmaceutical industries. Synthetic biology and metabolic engineering have enabled the efficient microbial production of l-malic acid, albeit not in Yarrowia lipolytica, an important industrial microorganism. The present study aimed to explore the potential of this fungal species for the production of l-malic acid. First, endogenous biosynthetic genes and heterologous transporter genes were overexpressed in Y. lipolytica to identify bottlenecks in the l-malic acid biosynthesis pathway grown on glycerol. Second, overexpression of isocitrate lyase, malate synthase, and malate dehydrogenase in the glyoxylate cycle pathway and introduction of a malate transporter from Schizosaccharomyces pombe significantly boosted l-malic acid production, which reached 27.0 g/L. A subsequent increase to 37.0 g/L was attained through shake flask medium optimization. Third, adaptive laboratory evolution allowed the engineered strain Po1g-CEE2+Sp to tolerate a lower pH and to accumulate a higher amount of l-malic acid (56.0 g/L). Finally, when scaling up to a 5 L bioreactor, a titer of 112.5 g/L was attained. In conclusion, this study demonstrates for the first time the successful production of l-malic acid in Y. lipolytica by combining metabolic engineering and laboratory evolution, paving the way for large-scale sustainable biosynthesis of this and other organic acids.