Extreme climate events, such as marine heatwaves (MHWs), are expected to occur more frequently and intensely in the future, resulting in a substantial impact on marine life. The way that diatoms respond to MHWs may have crucial effects on global primary production and biogeochemical cycles. Euplanktonic diatoms appear to benefit from MHWs directly, but this phenomenon needs an explanation. As concerns tychoplanktonic and benthic diatoms, no studies have been addressed on their thermal response strategies. To address this, we investigated the responses and underlying mechanisms of three typical growth forms of diatoms, Pseudo-nitzschia multiseries (euplanktonic), Paralia guyana (tychoplanktonic) and Navicula avium (benthic), under heat stress by combining a growth experiment with transcriptomic analysis. Our results showed that the physiological responses of diatoms to MHWs and underlying molecular mechanisms are largely related to their growth forms. The euplanktonic diatom was first depressed, but then had a distinct increase in the growth rate accompanied by inducing zeatin and unsaturated fatty acid biosynthesis and repressing substance assimilation and energy metabolism. Contrarily, the benthic diatom showed elevated substance and energy demands for macromolecules accumulation by reducing cell division and increasing photosynthesis and nitrogen assimilation. The tychoplanktonic diatom exhibited higher physiological plasticity to maintain growth and cellular homeostasis. Our results indicate the increased rate of cell division in euplanktonic diatoms under heat stress is likely an emergency response strategy promoting diatom dispersal for survival, but at the cost of disturbances of metabolic balance.
Read full abstract