Continuous, cuffless blood pressure (BP) monitoring devices based on measuring pulse wave velocity (PWV) or pulse transit time (PTT) are emerging but are often plagued by large prediction errors. A key issue is that these techniques typically rely on a single PWV value, assuming a linear response and small arterial wall deformations. However, arterial response to BP is inherently nonlinear, with PWV varying over time [PWV(t)] by up to 50% during a cardiac cycle. This study evaluates the impact of assuming a single PWV on BP prediction accuracy. Using a Fluid-structure Interaction (FSI) testbed, we simulate the radial and common carotid arteries with the Holzapfel-Gasser-Ogden (HGO) constitutive model to capture nonlinear arterial behavior under a pulsatile physiological blood flow. Pressure data from FSI simulation are used as the ground truth, while inner area A(t) and two PWV values, at diastole and systole, serve as inputs to BP prediction models. Two models are tested: one using a single PWV value, emulating existing PWV-based BP prediction methods; another using the two PWV values to account for PWV(t). The single-PWV BP model produced prediction errors of 17.44mmHg and 6.57mmHg for the radial and carotid arteries, respectively. The model incorporating two PWV values reduced these errors by 90.6% and 96.8%, respectively. Relying on a single PWV in BP prediction models can lead to significant errors. To improve BP accuracy, future efforts should focus on incorporating PWV(t), or at least both diastolic and systolic PWV values, into these models.
Read full abstract