Okadaic acid (OA) is one of the main virulence factors of diarrheal shellfish toxins (DSP). It is of great significance to detect OA with an accurate, specific and cost-effective technique in the fields of seafood safety and water quality control. In this work, an electrochemical aptasensor with reverse amplification was developed for the sensitive detection of OA. A two-dimensional graphite-phase nanomaterial (carbon nitride) modified with an anti-OA aptamer and thionine (Th) was immobilized onto the surface of the electrochemical electrode as the sensitive element to capture target OA molecules. ssDNA-modified carbon nitride was used as the reverse amplification element by hybridizing with non-OA linked aptamers. The preparation of the electrochemical aptasensor was well characterized by Scanning Electron Microscopy (SEM), zeta potential detection, UV-Vis absorption, Brunner-Emmet-Teller (BET) measurements, and electrochemical measurements. The quantitative assessment of OA was achieved by differential pulse voltammetry (DPV). Experimental results indicated that this aptasensor showed a concentration-dependent response to OA with a good detection performance including in terms of selectivity, repeatability, reproducibility, and stability. It exhibited 100-fold selectivity between OA and other toxins including dinophysistoxins (DTX), pectenotoxins (PTX), and yessotoxins (YTX). In addition, it showed a much wider quantification range, which is 10-13 M-10-10 M (0.080-80.50 pg mL-1). The detection limit was as low as 10-13 M (0.080 pg mL-1). The aptasensor also successfully achieved significant practicality on real shellfish samples contaminated by OA. All these results demonstrated that the reverse amplification strategy for marine toxin detection may provide a label-free and rapid detection approach for portable applications in the fields of environmental monitoring and food security.