BackgroundIrinotecan (also known as CPT-11) is a topoisomerase I inhibitor that is primarily used for the treatment of advanced colorectal cancer. CPT-11 and its active metabolite SN-38 can directly damage intestinal mucosal cells. In addition, CPT-11 can activate the Toll-like receptor 4 (TLR4) inflammasome/nuclear factor kappa-B p65 (NF-κB p65) pathway, ultimately leading to intestinal inflammation-related injury. Shu Bu Wenshen Guchang recipe (SBWGR) has the spleen and kidneys. Herein, we investigated the effects of SBWGR on intestinal injury and the TLR4/NF-κB signaling pathways in mice with CPT-11-induced delayed-type diarrhea, aiming to provide evidence for the treatment of CPT-11-induced delayed-type diarrhea.MethodsThirty tumor-bearing mice were divided into normal control, model control, octreotide, low dose SBWGR, and high dose SBWGR groups, with 6 mice in each group. After successful modelling of delayed diarrhea, the normal and model control groups were given equal amounts of saline for 5 consecutive days, and the other three groups gave the corresponding intra-drug administration. Body weight, tumor size, Chiu score, intestinal ischemia and reperfusion injury, and disease activity index (DAI) were recorded in each group. The levels of intestinal interleukin-1β (IL-1β), IL-18, and tumor necrosis factor-α (TNF-α) were measured by an enzyme-linked immunosorbent assay (ELISA). Intestinal TLR4 and NF-κB p65 levels were measured by reverse transcription-polymerase chain reaction (RT-PCR) and protein blotting.ResultsThe weight of octreotide and kidney was higher than the control group (P<0.05); The tumor volume comparison of the model control group, octreotide group, warm kidney intestine low dose group, and warm kidney intestine high dose group were not significantly different (P>0.05). Octreotide group, intestinal Chiu score, diarrhea score, DAI level, intestinal inflammatory cytokines, IL-1β, IL-18 and TNF-α intestinal level, intestinal TLR4, NF-κB p65 mRNA protein expression levels were significantly lower than those of the model control group (P<0.05), and the amount of the treatment group was increased (P<0.05).ConclusionsSBWGR exerts a prominent protective effect on intestinal damage caused by CPT-11-induced delayed-type diarrhea, which may be achieved by inhibiting the activation of the intestinal TLR4/NF-κB signaling pathway.