Concrete filled steel tube (CFST) columns are the main loaded elements in the structures as they provoke the superior mechanical properties of constituent materials. However, concrete filled double steel tube (CFDST) columns refer to a new type of composite elements which have very high level of fire resistance and the potential to be implemented in high-rise structures. Columns are exposed to high stresses due to the increasing loads of daily life. Therefore, unpredictable deformations may occur and affect the performance and safety of structures. This article first studies the effectiveness of a concrete filled circular steel tube (CFCST)-based technique for repairing buckled and stressed CFST columns, then it studies the advantages of CFDST columns in improving the capability of composite members. The CFCST-based repairing system is to place the deformed CFST column in a larger diameter steel tube, and then the concrete is poured in the gap between the deformed column and the larger tube. Buckled CFST specimens with different tube tkicknesses were repaired and tested to failure under axial compression. The performance of repaired CFST columns was compared with that of undamaged counterpart columns. Based on findings, it can be concluded that the repair technique restored the capacity of the deformed columns from 97% to 100% of the capacity of the undamaged counterpart columns which confirm the effectiveness of repairing using CFCST-based technique. Results of the study provide significant information to the available test data concerning repairing of CFST members.
Read full abstract