Gallium nitride (GaN) exhibits distinctive physical and chemical properties that render it indispensable in a multitude of electronic and optoelectronic devices. Given that GaN is a typical hard and brittle material that is difficult to machine, femtosecond laser technology provides an effective and convenient tool for processing such materials. However, GaN undergoes complex physical and chemical changes during high-power ablation, which poses a challenge to high-precision processing with controllable geometry. In this study, the quantitative relationship between the parameters of a single-pulse femtosecond laser and GaN ablation morphology was investigated using isotherm distribution. A multiphysics model using COMSOL Multiphysics® was developed to generate the isothermal distributions. Experiments were conducted on the femtosecond laser ablation of GaN at various single-pulse energies, and the resulting ablation morphologies were compared with the predictions from the multiphysics model. The comparison demonstrated that the calculated isotherm distribution accurately predicted not only the ablation diameter and depth but also the crater shape across a broad range of laser fluences. The predicted errors of the ablation diameters and depths were within 4.71% and 10.9%, respectively. The root mean square error (RMSE) and coefficient of determination (R2) were employed to evaluate the prediction errors associated with the crater shapes, which fell within the range of 0.018–0.032 μm and 0.77–0.91, respectively. This study can provide an important reference for utilizing femtosecond lasers in the precise ablation of GaN to achieve desired geometries.
Read full abstract