With the rapid growth of internet finance and e-payment, payment fraud has attracted increasing attention. To prevent customers from being cheated, systems often block risky payments depending on a risk factor. However, this may also inadvertently block cases which are not actually risky. To solve this problem, we present IFDDS, a system that proactively chats with customers through intelligent speech interaction to precisely determine the actual payment risk. Our system adopts imitation learning to learn dialogue policies. In addition, it encompasses a dialogue risk detection module which identifies fraud probability every turn based on the dialogue state. We create a web-based user interface which simulates a practical voice-based dialogue system.
Read full abstract