<p>Literature data and own research results on the technology for isolating natural sesquiterpene lactones such as arglabin, alantolactone, artemisinin, grosheimin, isoalantolactone, parthenolide, santonin and potential possibilities of their use as renewable material for obtaining new compounds as well as biologically active derivatives are generalized in this review. Sesquiterpene lactones from plants are promising sources for the development and practical application of new original medical products possessing antitumor, anti-inflammatory, antimalarial, antiulcer, antiviral and immune-stimulating action. The technology for isolating sesquiterpene lactones is based on the extraction of raw plant material by different organic solvents with the subsequent chromatographic purification. The effective and environmentally safe technology for isolation and purification of sesquiterpene lactone arglabin from <em>Artemisia glabella</em> Kar. et Kir. by the СО<sub>2</sub>-extraction method is developed. Thereat, it was experimentally determined that the method for isolating arglabin from CO<sub>2</sub> extract of <em>Artemisia glabella</em> Kar. et Kir. using centrifugal partition chromatography is effective for preparative isolation of the active substance and its manufacturing application. It is practically important to obtain water-soluble derivatives of biologically active sesquiterpene lactones and also to use the nanotechnology achievements for directed transportation of a molecule of the medicine in the human body thereby reducing toxicity of an active component. Promising direction is chemical modification of molecules in sesquiterpene lactones which are renewable material for obtaining new derivatives, thanks to which it becomes possible to solve two problems at the same time. Firstly, these researches help to obtain derivatives with higher biological activity or improved physical and chemical properties. Secondly, these researches enable us to disclose the mechanism of action of different medicines within the framework of “structure-activity” correlation. The article presents the literature data and own results on chemical modification of sesquiterpene lactones of alantolactone, arglabin, artemisinin, grosheimin, isoalantolactone, parthenolide and santonin. Various reactions on functional groups of these molecules were used to obtain a number of new derivatives of sesquiterpene lactones containing haloid-, pyrazole-, triazole-, amino-, dialkylamino-, hydroxy-, dialkyl phosphonate- and cyclopropane groups, which have shown high physiological activity.</p>
Read full abstract