The effect of twisting motion dependent diagonal hopping on the I-V characteristic of Poly(dG)-Poly(dC) DNA molecule has been studied. Twisting angle dependent hopping constant is model using semi-empirical Slater-Koster theory. The I-V characteristic of DNA molecule is calculated from transmission probability using Landauer-Buttiker formalism by assuming symmetric voltage drop at the contacts. The transmission probability of charge on the molecule is calculated using transfer and scattering matrix methods, simultaneously. The calculation is carried out on 32 base pairs doubled-stranded DNA molecule model sandwiched in between two metallic electrodes. The results show that at low voltage the magnitude of current is not influenced much by the change of diagonal hopping term caused by base pair twisting motion. Larger influenced is observed at higher voltages, after decreases by increasing the coupling parameter of vibration and diagonal hopping constant up to some value, current increases. This trend is observed in the I-V characteristic of DNA molecule for all frequencies and temperatures used. Lower twisting motion frequency shows larger influences of diagonal hopping term on the current than the one at higher frequencies.