Polarized heavy ions in storage rings are seen as a valuable tool for a wide range of research, from the study of spin effects in relativistic atomic collisions to the tests of the Standard Model. For forthcoming experiments, several important challenges need to be addressed to work efficiently with such ions. Apart from the production and preservation of ion polarization in storage rings, its measurement is an extremely important issue. In this contribution, we employ the radiative recombination (RR) of polarized electrons into the ground state of initially hydrogen-like, finally helium-like, ions as a probe process for beam diagnostics. Our theoretical study clearly demonstrates that the RR cross section, integrated over photon emission angles, is highly sensitive to both the degree and the direction of ion polarization. Since the (integrated) cross-section measurements are well established, the proposed method offers promising prospects for ion spin tomography at storage rings.
Read full abstract