Objective The purpose of this study was to conduct a systematic investigation of the potential of artificial intelligence (AI) models in the prediction, detection of diagnostic biomarkers, and progression of diabetic kidney disease (DKD). In addition, we compared the performance of non-logistic regression (LR) machine learning (ML) models to conventional LR prediction models. Methods Until January 30, 2024, a comprehensive literature review was conducted by investigating databases such as Medline (via PubMed) and Cochrane. Research that is inclusive of AI or ML models for the prediction, diagnosis, and progression of DKD was incorporated. The area under the Receiver Operating Characteristic Curve (AUROC) served as the principal outcome metric for assessing model performance. A meta-analysis was performed utilizing MedCalc statistical software to calculate pooled AUROC and assess the performance differences between LR and non-LR models. Results A total of 57 studies were included in the meta-analysis. The pooled AUROC of AI or ML model was 0.84 (95% CI = 0.81-0.86, p < 0.0001) for analyzing prediction of DKD, 0.88 (95%CI = 0.84-0.92, p < 0.0001) for detecting diagnostic biomarkers, and 0.80 (95% CI = 0.77-0.82, p < 0.0001) for analyzing progression of DKD. The pooled AUROC of LR and non-LR ML models exhibited no significant differences across all categories (p > 0.05), except for the random forest (RF) model, which displayed a statistically significant increase in predictive accuracy compared to LR for DKD occurrence (p < 0.04). Conclusion ML models showed solid DKD prediction effectiveness, with pooled AUROC values over 0.8, suggesting good performance. These data demonstrated that non-LR and LR models perform similarly in overall CKD management, but the RF model outperforms the LR model, particularly in predicting the occurrence of DKD. These findings highlight the promise of AI technologies for better DKD management. To improve model reliability, future study should include extended follow-up periods as well as external validation.
Read full abstract