This study aimed to test an artificial intelligence-based reading system (AIRS) capable of reading retinographies of type 2 diabetic (T2DM) patients and a predictive algorithm (DRPA) that predicts the risk of each patient with T2DM of developing diabetic retinopathy (DR). We tested the ability of the AIRS to read and classify 15,297 retinal photographs from our database of diabetics and 1200 retinal images taken with Messidor-2 into the different DR categories. We tested the DRPA in a sample of 40,129 T2DM patients. The results obtained by the AIRS and the DRPA were then compared with those provided by four retina specialists regarding sensitivity (S), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and area under the curve (AUC). The results of testing the AIRS for identifying referral DR (RDR) in our database were ACC = 98.6, S = 96.7, SP = 99.8, PPV = 99.0, NPV = 98.0, and AUC = 0.958, and in Messidor-2 were ACC = 96.78%, S = 94.64%, SP = 99.14%, PPV = 90.54%, NPV = 99.53%, and AUC = 0.918. The results of our DRPA when predicting the presence of any type of DR were ACC = 0.97, S = 0.89, SP = 0.98, PPV = 0.79, NPV = 0.98, and AUC = 0.92. The AIRS performed well when reading and classifying the retinographies of T2DM patients with RDR. The DRPA performed well in predicting the absence of DR based on some clinical variables.
Read full abstract