Land-use change is a typical geographic evolutionary process characterized by spatial heterogeneity. As such, the driving factors, conversion rules, and rate of change vary for different regions around the world. However, most cellular automata (CA) models use the same transition rules for all cells in the model space when simulating land-use change. Thus, spatial heterogeneity change is ignored in the model, which means that these models are prone to over- or under simulation, resulting in a large deviation from reality. An effective means of accounting for the influence of spatial heterogeneity on the quality of the CA model is to establish a partitioned model based on cellular space partitioning. This study established a partitioned, dual-constrained CA model using the area-weighted frequency of land-use change (AWFLUC) to capture its spatial heterogeneity. This model was used to simulate the land-use evolution of the Dianchi Lake watershed. First, the CA space was divided into subzones using a dual-constrained spatial clustering method. Second, an artificial neural network (ANN) was used to automatically acquire conversion rules to construct an ANN-CA model of land-use change. Finally, land-use changes were simulated using the ANN-CA model based on data from 2006 to 2016, and model reliability was validated. The experimental results showed that compared with the non-partitioned CA model, the partitioned counterpart was able to improve the accuracy of land-use change simulation significantly. Furthermore, AWFLUC is an important indicator of the spatial heterogeneity of land-use change. The shapes of the division spaces were more similar to reality and the simulation accuracy was higher when AWFLUC was considered as a land-use change characteristic.