Abnormal biosynthesis of spliceosomes and ribosomes can lead to their dysfunction, which in turn disrupts protein synthesis and results in various diseases. While genetic factors have been extensively studied, our understanding of how environmental compounds interfere with spliceosome and ribosome biosynthesis remains limited. In the present study, we employed a Reduced Transcriptome Analysis (RTA) approach, integrating large-scale transcriptome data sets of zebrafish and compiling a specific zebrafish gene panel focusing on the spliceosome and ribosome, to elucidate the potential disruptors targeting their biosynthesis. Transcriptomic data sets for 118 environmental substances and 1400 related gene expression profiles were integrated resulting in 513 exposure signatures. Among these substances, several categories including PCB126, transition metals Lanthanum (La) and praseodymium (Pr), heavy metals Cd2+ and AgNO3 and atrazine were highlighted for inducing the significant transcriptional alterations. Furthermore, we found that the transcriptional patterns were distinct between categories, yet overlapping patterns were generally observed within each group. For instance, over 82 % differentially expressed ribosomal genes were shared between La and Pr within the equivalent concentration range. Additionally, transcriptional complexities were also evident across various organs and developmental stages of zebrafish, with notable differences in the inhibition of the transcription of various spliceosome subunits. Overall, our results provide novel insights into the understanding of the adverse effects of environmental compounds, thereby contributing to their environmental risk assessments.