Urban agglomerations are increasingly becoming the primary regional units in global competition, characterized by the rapid expansion of impervious surface areas, which negatively impacts both society and the environment. This study quantifies the spatiotemporal expansion of these surfaces in the Yangtze River Delta urban agglomeration and explores its driving factors using a Geographically Weighted Random Forest model. The results demonstrate a transition from “point expansion” to “infill development”, while also revealing a gradual southward shift in the developmental focus of the Yangtze River Delta urban agglomeration. Although expansion intensity has decreased, spatial clustering has intensified. Based on the expansion patterns of impervious surface areas, we propose a novel regional classification method, dividing the Yangtze River Delta urban agglomeration into three zones: “A-Development Decline Zone”, “B-Development Core Zone”, and “C-Development Ascendance Zone”. Socio-economic factors are the primary drivers of this expansion, followed by science and education, and then the ecological environment, while physical geography factors have the least impact. The study reveals differentiated regional development characteristics and further refines the sub-regions within the urban agglomeration, providing a new perspective for future regional coordinated development policies.
Read full abstract