Meis1 (Myeloid Ecotropic viral Integration Site 1) is a homeobox gene that was originally isolated as a common site of viral integration in myeloid tumors of the BXH-2 recombinant inbred mice strain. We previously isolated a Xenopus homolog of Meis1 (Xmeis1). Here we show that Xmeis1 may play a significant role in neural crest development. In developing Xenopus embryos, Xmeis1 displays a broad expression pattern, but strong expression is observed in tissue of neural cell fate, such as midbrain, hindbrain, the dorsal portion of the neural tube, and neural crest derived branchial arches. In animal cap explants, overexpression of Xmeis1b, an alternatively spliced form of Xmeis1, induces expression of neural crest marker genes in the absence of mesoderm. Moreover, Xmeis1b induces XGli-3 and XZic3, pre-pattern genes involved at the earliest stages of neural crest development, and like these two genes, can induce ectopic pigmented cell masses when overexpressed in developing embryos. Misexpression of Xmeis1b also induces ectopic expression of neural crest markers along the antero-posterior axis of the neural tube in developing Xenopus embryos. In contrast, Xmeis1a, another splice variant, is much less effective at inducing these effects. These data suggest that Xmeis1b is involved in neural crest cell fate specification during embryogenesis, and can functionally intersect with the Gli/Zic signal transduction pathway.
Read full abstract