In this research paper we used individual classifier approach for Handwritten Devanagari text recognition. We experimented different categorical classifiers namely Random Forest Classifier (RFC), Support Vector Machine (SVM), K Nearest Neighbor Classifier (KNN), Logistic Regression Classifier (LogRegr), Decision Tree Classifier (DTree). Seven different feature sets are used namely Eccentricity, Euler Number, Horizontal Histogram, Vertical Histogram, HOG Features, LBP Features, and Statistical Features. The experimentation is carried out on 9434 different characters whose features are extracted from 220 handwritten image documents from PHDIndic_11 dataset. We deduced and implemented a unique scheme namely VSPCA scheme. VSPCA is Vectorization, Scaling, and Principal Component Analysis carried out on all feature sets before being given for model training. We obtained varied accuracies using all these five classifiers on all these six feature sets in which 99.52% highest accuracy is observed.
Read full abstract