For the demonstration of fusion power plant technology, DEMO dedicated materials are necessary to cope with the harsh environment of high energy neutrons. For this purpose, the international neutron irradiation facility for fusion materials IFMIF/DEMO Oriented Neutron Source (DONES) is planned to be built in Granda, Spain. In the DONES facility, a deuteron beam hitting the lithium target produces a high energy neutron flux. Due to the high-power density, the windowless target is a free surface liquid lithium flow in a duct with a concave backplate. In order to keep the heat released by the beam within the liquid lithium and to avoid its intrusion in the backplate, a stable configuration of the free surface flow with a setpoint layer thickness of 25 ± 1 mm is crucial. In particular, stable wave structures, so called wakes, which occur from accumulated impurities at the nozzle edge, can cause a critical local decrease in the layer thickness of more than 1 mm. Therefore, it is necessary to better understand the nature of these wakes and to be able to monitor the surface profile to shut down the beam in case of a critical thickness loss, but to avoid unintended shutdowns. In the context of this work, currently available optical sensors were tested on their capability of detecting a specular liquid metal surface at measurement distances of several meters. After an initial selection, two optical sensors were further considered. Experiments with the liquid metal alloy GaInSn and simulations with the software Blender of the selected optical sensors for their capability of measuring distances of liquid metal were conducted. The results showed a significant dependency of the measurement results on the waviness of the liquid metal surface. Nevertheless, it was possible to resolve the wavy liquid metal surface with a sufficient resolution to detect critical wake structures.
Read full abstract