This paper describes an extensive study in which a multiclass QuEChERS based approach was optimized for determination of 150 pesticides and 7 mycotoxins in table olives. Three versions of QuEChERS were evaluated and compared (unbuffered, citrate and acetate buffering). A combination of EMR-Lipid cartridges and liquid nitrogen or freezer freezing out were tested for clean-up of the oily olive extracts. Analysis of the extracts were performed by LC-MS/MS triple quadrupole. The best results were achieved using acetate QuEChERS with liquid nitrogen for clean-up. For validation, organic olives were ground and spiked at 4 concentrations with pesticides and mycotoxins (n = 5). The linearity of the calibration curves was assessed by analyzing calibration standards of 7 concentrations which were prepared separately in acetonitrile and in blank olive extract (n = 5). The validation study demonstrated that the calculated r2 was ≥0.99 for 144 pesticides and 6 mycotoxins, when the calibration curves were prepared in matrix extract, showing satisfactory linearity. Matrix effects were within the range of ±20% for only 46 pesticides and one mycotoxin. Then, to ensure reliable quantification, calibration standards had to be matrix-matched. In accuracy experiments 138 pesticides and 6 mycotoxins presented recoveries from 70 to 120% and RSD ≤ 20% for at least 2 of the 4 spike concentrations evaluated, being successfully validated. The integrated QuEChERS and LC-MS/MS method meet MRL for 11 of the 21 pesticides regulated for olives in Brazil and for 132 pesticides which are regulated in the EU law. Eleven commercial table olive samples were analyzed and 4 of them tested positive for pesticides. All the positive samples violate the Brazilian law and one sample violates also the European law.