The peptidoglycan (PG) cell wall is critical for bacterial growth and survival and is a primary antibiotic target. MreD is an essential accessory factor of the Rod complex, which carries out PG synthesis during elongation, yet little is known about how MreD facilitates this process. Here, we present the cryo-electron microscopy structure of Thermus thermophilus MreD in complex with another essential Rod complex component, MreC. The structure reveals that a periplasmic-facing pocket of MreD interacts with multiple membrane-proximal regions of MreC. We use single-molecule FRET to show that MreD controls the conformation of MreC through these contacts, inducing a state primed for Rod complex activation. Using E. coli as a model, we demonstrate that disrupting these interactions abolishes Rod complex activity in vivo . Our findings reveal the role of MreD in bacterial cell shape determination and highlight its potential as an antibiotic target.