Abstract

Infection by the Plasmodium falciparum parasite is responsible for the most severe form of human malaria. The asexual blood stage of the parasite, which occurs inside human red blood cells, is responsible for the symptoms of malaria and is the target of most antimalarial drugs. Plasmodium spp. rely on their highly divergent cytoskeletal structures to scaffold their cell division, sustain the mechanical stress of invasion, and survive in both the human bloodstream and the mosquito. We investigate the function of a class of divergent intermediate filament-like proteins called alveolins in the clinically important blood stage. The functional role of individual alveolins in Plasmodium remains poorly understood due to pleiotropic effects of gene knockouts and redundancy among alveolins. We evaluate the localization and essentiality of the four asexual-stage alveolins and find that PfIMC1g and PfIMC1c are essential. Furthermore, we demonstrate that PfIMC1g is critical for survival of the parasite post-invasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.