Precise determination of the endogenous catecholamines, dopamine (DA), epinephrine (E) and norepinephrine (NE) faces substantial challenges due to their low physiological concentrations in plasma. We synthesized, for the first time, a magnetic metal–organic framework (MIL-100) composite with boronic acid-functionalized pore-walls (denoted as MG@MIL-100-B composite) using a metal–ligand-fragment coassembly (MLFC) strategy. The composites were then applied as an effective magnetic solid-phase extraction (SPE) sorbent for determination of trace catecholamine concentrations in rat plasma through coupling with HPLC-MS/MS. The obtained nano-composites exhibited high magnetic responsivity, uniform mesopores, large specific surface area, and boronic acid-functionalized inner pore-walls. Catecholamines in rat plasma were extracted through interaction between the cis-diol structures and the boronic acid groups in the MG@MIL-100-B composites. Extraction conditions were optimized by studying SPE parameters including adsorption and desorption time, elution solvent type, pH conditions and adsorbent amount. With our approach, the detection limits (S/N = 3) were as low as 0.005 ng mL−1 for DA and E, and 0.02 ng mL−1 for NE. Intra- and inter-day precision ranged from 2.84–6.63% (n = 6) and 5.70–11.44% (n = 6), respectively. Recoveries from spiking experiments also showed satisfactory results of 94.40–109.51%. Finally, the MG@MIL-100-B composites were applied successfully to determine catecholamine concentrations in rat plasma.
Read full abstract