A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2′-Hydroxy-5′-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor’s unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10−2 ppm and a quantification limit of 1.75 × 10−1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.