Epidemiological studies have shown that a substantial proportion of acute coronary events occur in individuals who lack the traditional high-risk cardiovascular (CV) profile. Mental stress is an emerging risk and prognostic factor for coronary artery disease and stroke, independently of conventional risk factors. It is associated with an increased rate of CV events. Acute mental stress may develop as a result of anger, fear, or job strain, as well as consequence of earthquakes or hurricanes. Chronic stress may develop as a result of long-term or repetitive stress exposure, such as job-related stress, low socioeconomic status, financial problems, depression, and type A and type D personality. While the response to acute mental stress may result in acute coronary events, the relationship of chronic stress with increased risk of coronary artery disease (CAD) is mainly due to acceleration of atherosclerosis. Emotionally stressful stimuli are processed by a network of cortical and subcortical brain regions, including the prefrontal cortex, insula, amygdala, hypothalamus, and hippocampus. This system is involved in the interpretation of relevance of environmental stimuli, according to individual’s memory, past experience, and current context. The brain transduces the cognitive process of emotional stimuli into hemodynamic, neuroendocrine, and immune changes, called fight or flight response, through the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. These changes may induce transient myocardial ischemia, defined as mental stress-induced myocardial ischemia (MSIMI) in patients with and without significant coronary obstruction. The clinical consequences may be angina, myocardial infarction, arrhythmias, and left ventricular dysfunction. Although MSIMI is associated with a substantial increase in CV mortality, it is usually underestimated because it arises without pain in most cases. MSIMI occurs at lower levels of cardiac work than exercise-induced ischemia, suggesting that the impairment of myocardial blood flow is mainly due to paradoxical coronary vasoconstriction and microvascular dysfunction.