Surfactant injection is a well-established method of chemical EOR processes. Surfactant adsorption into clay layers can prevent their proper performance and thus reduce the oil recovery factor. On the other hand, this adsorption property of clay materials can be used to prevent surface and underground water pollution and reduce soil pollution. In this experimental study, the effect of surfactant concentration, electrolyte type (NaCl and MgCl2), and the solution salinity on fluid adsorption into the interlayer space of different clay types (bentonite and kaolinite) was investigated. XRF analysis was conducted on two relevant clay samples, and immersion and Washburn tests were performed on the desired samples with the Sigma 700 setup. Then, according to the clay type, the most optimal conditions were introduced for the surfactant solution used in the two areas of EOR and environmental processes related to reducing soil pollution. In the EOR processes, the optimal condition for the lowest adsorption amount is C (with 1 CMC concentration and salinity of 100,000 ppm for NaCl salt). This fluid works better in kaolinite formations. In the environmental field related to the reduction of soil pollution, if the pollutants we are looking for are R and S (with alkyl benzene sulfonic acid as the dominant agent), bentonite has a better performance than kaolinite in terms of adsorption and subsequently pollution control. If the polluting fluid contains MgCl2 ions in the exact salinity values, the adsorption amount and soil pollution control will be higher for both adsorbent clays than if our fluid has NaCl salinity. The study's findings have a wide range of applications in surfactant flooding designs, surfactant adsorption optimization, and can be generalized to other detergent types.
Read full abstract