Fecal indicator bacteria (FIB) are the basis for water quality regulations and are considered proxies for waterborne pathogens when conducting human health risk assessments. The direct detection of pathogens in water and simultaneous identification of the source of fecal contamination are possible with microarrays, circumventing the drawbacks to FIB approaches. A multigene target microarray was used to assess the prevalence of waterborne pathogens in a fecally impaired mixed-use watershed. The results indicate that fecal coliforms have improved substantially in the watershed since its listing as a 303(d) impaired stream in 2002 and are now near United States recreational water criterion standards. However, waterborne pathogens are still prevalent in the watershed, as viruses (bocavirus, hepatitis E and A viruses, norovirus, and enterovirus G), bacteria (Campylobacter spp., Clostridium spp., enterohemorrhagic and enterotoxigenic Escherichia coli, uropathogenic E. coli, Enterococcus faecalis, Helicobacter spp., Salmonella spp., and Vibrio spp.), and eukaryotes (Acanthamoeba spp., Entamoeba histolytica, and Naegleria fowleri) were detected. A comparison of the stream microbial ecology with that of sewage, cattle, and swine fecal samples revealed that human sources of fecal contamination dominate in the watershed. The methodology presented is applicable to a wide range of impaired streams for the identification of human health risk due to waterborne pathogens and for the identification of areas for remediation efforts.IMPORTANCE The direct detection of waterborne pathogens in water overcomes many of the limitations of the fecal indicator paradigm. Furthermore, the identification of the source of fecal impairment aids in identifying areas for remediation efforts. Multitarget gene microarrays are shown to simultaneously identify waterborne pathogens and aid in determining the sources of impairment, enabling further focused investigations. This study shows the use of this methodology in a historically impaired watershed in which total maximum daily load reductions have been successfully implemented to reduce risk. The results suggest that while the fecal indicators have been reduced more than 96% and are nearing recreational water criterion levels, pathogens are still detectable in the watershed. Microbial source tracking results show that additional remediation efforts are needed to reduce the impact of human sewage in the watershed.