Acoustically driven ferromagnetic resonance (ADFMR) is a platform that enables efficient generation and detection of spin waves via magnetoelastic coupling with surface acoustic waves (SAWs). While previous studies successfully achieved ADFMR in ferromagnetic metals, there are only few reports on ADFMR in magnetic insulators such as yttrium iron garnet (Y3Fe5O12, YIG) despite more favorable spin wave properties, including low damping and long coherence length. The growth of high-quality YIG films for ADFMR devices is a major challenge due to poor lattice-matching and thermal degradation of the piezoelectric substrates during film crystallization. In this work, we demonstrate ADFMR of YIG thin films on LiNbO3 (LNO) substrates. We employed a SiOx buffer layer and rapid thermal annealing for crystallization of YIG films with minimal thermal degradation of LNO substrates. Optimized ADFMR device designs and time-gating measurements were used to enhance the ADFMR signal and overcome the intrinsically low magnetoelastic coupling of YIG. YIG films have a polycrystalline structure with an in-plane easy direction due to biaxial stresses induced during cooling after crystallization. The YIG device shows clear ADFMR patterns with maximum absorption for H ≈ 160 mT parallel to SAW propagation, which is consistent with our simulation results based on existing theoretical models. These results expand possibilities for developing efficient spin wave devices with magnetic insulators.
Read full abstract