Abstract
Spin waves are proposed as information carriers for next-generation computing devices because of their low power consumption. Moreover, their wave-like nature allows for novel computing paradigms. Conventional methods to detect propagating spin waves are based either on electrical induction, limiting the downscaling and efficiency complicating eventual implementation, or on light scattering, where the minimum detectable spin-wave wavelength is set by the wavelength of the laser unless near-field techniques are used. In this article, we demonstrate the magneto-optical detection of spin waves beyond the diffraction limit using a metallic grating that selectively absorbs laser light. Specifically, we demonstrate the detection of propagating spin waves with a wavelength of 700nm in 20nm thick Ni80Fe20 strips using a diffraction-limited laser spot with a diameter of 10μm. Additionally, we show that this grating is selective to the wavelength of the spin wave, providing phase-sensitive, wavevector-selective spin-wave detection in the time domain, thus providing a complementary approach to existing techniques such as Brillouin light scattering. This should open up new avenues toward the integration of the burgeoning fields of photonics and magnonics and aid in the optical detection of spin waves in the short-wavelength exchange regime for fundamental research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.