Aiming at the demand for long-range and high-resolution imaging detection of small targets such as submerged submarine markers in shallow coastal waters, research on single-photon lidar imaging technology is carried out. This paper reports the sequential two-mode fusion imaging algorithm, which has a strong information extraction capability and can reconstruct scene target depth and reflection intensity images from complex signal photon counts. The algorithm consists of four steps: data preprocessing, extremely large group value estimation, noise sieving, and total variation smoothing constraints to image the target with high quality. Simulation and test results show that the imaging performance and imaging characteristics of the method are better than the current high-performance first-photon group imaging algorithm, indicating that the method has a great advantage in sparse photon counting imaging, and the method proposed in this paper constructs a clear depth and reflectance intensity image of the target scene, even in the 50,828 Lux ambient strong light and strong interference, the 0.1 Lux low-light environment, or the underwater high-attenuation environment.