Hydrogen peroxide (H2 O2 ) is essential in oxidative stress and signal regulation of organs of animal body. Realizing in vitro quantification of H2 O2 released from organs is significant, but faces challenges due to short lifetime of H2 O2 and complex bio-environment. Herein, rationally designed and constructed a photoelectrochemical (PEC) sensor for in vitro sensing of H2 O2 , in which atomically dispersed iron active sites (Hemin) modified graphdiyne (Fe-GDY) serves as photoelectrode and catalyzes photo-electro-Fenton process. Sensitivity of Fe-GDY electrode is enhanced 8 times under illumination compared with dark condition. The PEC H2 O2 sensor under illumination delivers a wide linear range from 0.1 to 48 160µm and a low detection limit of 33nm, while demonstrating excellent selectivity and stability. The high performance of Fe-GDY is attributed to, first, energy levels matching of GDY and Hemin that effectively promotes the injection of photo-generated electrons from GDY to Fe3+ for reduced Fe2+ , which facilitates the Fe3+ /Fe2+ cycle. Second, the Fe2+ actively catalyzes H2 O2 to OH- through the Fenton process, thereby improving the sensitivity. The PEC sensor demonstrates in vitro quantification of H2 O2 released from different organs, providing a promising approach for molecular sensing and disease diagnosis in organ levels.