In the underwater domain, small object detection plays a crucial role in the protection, management, and monitoring of the environment and marine life. Advancements in deep learning have led to the development of many efficient detection techniques. However, the complexity of the underwater environment, limited information available from small objects, and constrained computational resources make small object detection challenging. To tackle these challenges, this paper presents an efficient deep convolutional network model. First, a CSP for small object and lightweight (CSPSL) module is introduced to enhance feature retention and preserve essential details. Next, a variable kernel convolution (VKConv) is proposed to dynamically adjust the convolution kernel size, enabling better multi-scale feature extraction. Finally, a spatial pyramid pooling for multi-scale (SPPFMS) method is presented to preserve the features of small objects more effectively. Ablation experiments on the UDD dataset demonstrate the effectiveness of the proposed methods. Comparative experiments on the UDD and DUO datasets demonstrate that the proposed model delivers the best performance in terms of computational cost and detection accuracy, outperforming state-of-the-art methods in real-time underwater small object detection tasks.
Read full abstract