We present a novel approach to dynamic datarace detection for multithreaded object-oriented programs. Past techniques for on-the-fly datarace detection either sacrificed precision for performance, leading to many false positive datarace reports, or maintained precision but incurred significant overheads in the range of 3 x to 30 x . In contrast, our approach results in very few false positives and runtime overhead in the 13% to 42% range, making it both efficient and precise. This performance improvement is the result of a unique combination of complementary static and dynamic optimization techniques.