Realizing high selectivity for producing biodegradable 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) for renewable polymers from 5-hydroxymethylfurfural (HMF) biomass through ring hydrogenation on single-atom catalysts poses a considerable challenge due to the complexity of HMF functional groups and the difficulty of H2 dissociation. We developed a detailed reaction mechanism based on ab initio molecular dynamics (AIMD) and quantum mechanics (QM) to find that Ru single-atom catalysts can simultaneously dissociate H2 and perform the ring hydrogenation of biomass-derived 2,5-bis(hydroxymethyl)furan (BHMF) to produce biodegradable BHMTHF, with a free energy barrier of 0.82 eV. The unique property of Ru single-atom sites enables H2 to dissociate easily on a single active site of Ru to participate directly in the reaction without diffusion. Furthermore, our predicted reaction rate from microkinetic analysis indicates that ring hydrogenation and side-chain hydrogenolysis are much faster than ring-opening hydrogenation over the range of 300-550 K. The product BHMTHF dominates with a selectivity of 98.9% at 300 and 78.4% at 550 K (the second product is 5-methylfurfural (5-MFA)). This study underscores the unique effectiveness of Ru single atoms in ring hydrogenation reactions using H2 as the hydrogen source, offering insights for the design of single-atom catalysts for other biomass reactions.