This study employs advanced satellite imagery from ASTER and Sentinel-2A to conduct detailed lithological mapping of the Devanur and Manamedu ophiolite complexes in the southern Central Shear Zone (CSZ). The primary focus is on the Manamedu Ophiolite Complex (MOC) and the Devanur Ophiolitic Complex (DOC). Image enhancement techniques such as Color composites, Principal Component Analysis (PCA), and Minimum Noise Fraction (MNF) were utilized to differentiate various rock types. RGB band combinations derived from PCA and MNF outputs demonstrated effective discrimination of rock units. Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) classification methods were employed on ASTER and Sentinel-2A images, yielding classified lithologies that closely matched existing maps from the Geological Survey of India (GSI) and other studies, validating the accuracy of the findings. Additionally, Laboratory Spectral Signature Studies were conducted on 10 rock samples using an ASD FieldSpec Pro® spectroradiometer, providing reflectance spectra from 350 nm to 2500 nm. These spectra, particularly the continuum-removed reflectance, revealed diagnostic absorption features that were corroborated by geochemical analyses. A detailed analysis investigated how elemental compositions and key minerals influenced absorption bands. Major oxide geochemical compositions of DOC and MOC samples were identified using XRF methods. The aim of this research is to characterize DOC and MOC through remote sensing and spectral signature analysis. Sentinel-2A data proved more effective in lithological discrimination compared to ASTER, with spectral signatures indicating the presence of iron (Fe) and magnesium (Mg) contents. Notably, SVM classification of Sentinel-2A MNF + DEM data achieved an overall accuracy of more than 90% when compared with field investigations. This study underscores the efficacy of processing VNIR and SWIR bands from ASTER and Sentinel-2A satellite imagery alongside DEM data and ground surveys for mapping mafic-ultramafic rocks in the DOC and MOC regions of the CSZ.
Read full abstract