This paper presents a novel single-stage soft-switched high-frequency-link three-phase dc–ac converter topology. The topology supports unidirectional dc to ac power flow and is targeted for applications like grid integration of photovoltaic sources, fuel cell, etc. The high frequency magnetic isolation results in reduction of system volume, weight, and cost. Sine-wave pulsewidth modulation is implemented in dc-side converter. Though high-frequency switched, dc-side converter is soft switched for most part of the line cycle. The ac-side converter active switches are line frequency switched incurring negligible switching loss. The line frequency switching of ac-side converter facilitates use of high voltage blocking inherently slow semiconductor devices to generate high voltage ac output. In addition, a cascaded multilevel structure is presented in this paper for direct medium-voltage ac grid integration. A detailed circuit analysis considering nonidealities like transformer leakage and switch capacitances, is presented in this paper. A 6-kW three-phase laboratory prototype is built. The presented simulation and experimental results verify the operation of the proposed topologies.
Read full abstract