In Saccharomyces cerevisiae, the S-phase cyclin Clb6 is expressed shortly before the G1/S transition. It has been shown that in S phase the SCFCdc4 ubiquitin ligase controls Clb6 proteolysis, which requires cyclin-dependent kinases activity. A Clb6-3A mutant, bearing non-phosphorylatable mutations at S6A, T39A, and S147A, was observed to be hyperstabilized in S-phase but was unstable in mitosis. In this study, we found that the APCCdh1 form of the Anaphase-Promoting Complex (APC) was required for Clb6 proteolysis in both early and late G1. An in vitro ubiquitination assay confirmed that Clb6 is a substrate for APCCdh1. A KEN box and a destruction box in the Clb6N-terminus were identified. Mutations in the KEN box (mkb) and/or the destruction box (mdb) enhanced Clb6 stability in G1. Expression of Clb6mkd, bearing both mutations in the mkb and mdb, allowed cells to bypass the late G1 arrest caused by cdc4-1. This bypass phenotype was observed to depend upon CDK phosphorylation at residues S6, T39 and S147. Compared to Clb6, overexpression of Clb6ST, bearing all five mutations of S6A, T39A, S147A, mkb and mdb in combination, had a greater effect on promoting expression of Clb2 and S-phase entry, caused a greater G2 delay and a greater defect in cell division. Swe1 was also required for bud emergence when Clb6ST was overexpressed. Our observations suggest that both APCCdh1 and SCFCdc4-dependent proteolysis of Clb6 at the G1/S border are crucial for multiple cell cycle regulated events including proper expression of Clb2, the G1/S and G2/M cell cycle transitions and for proper completion of cell division at mitotic exit.
Read full abstract