Size-dependent properties of surface-confined inorganic nanostructures are of interest for applications ranging from sensing to catalysis and energy production. Ligand-stabilized nanoparticles are attractive precursors for producing such nanostructures because the stabilizing ligands may be used to direct assembly of thoroughly characterized nanoparticles on the surface. Upon assembly; however, the ligands block the active surface of the nanoparticle. Methods used to remove these ligands typically result in release of nanoparticles from the surface or cause undesired growth of the nanoparticle core. Here, we demonstrate that mild chemical oxidation (50 ppm of ozone in nitrogen) oxidizes the thiolate headgroups, lowering the ligand's affinity for the gold nanoparticle surface and permitting the removal of the ligands at room temperature by rinsing with water. XPS and TEM measurements, performed using a custom planar analysis platform that permits detailed imaging and chemical analysis, provide insight into the mechanism of ligand removal and show that the particles retain their core size and remain tethered on the surface core during treatment. By varying the ozone exposure time, it is possible to control the amount of ligand removed. Catalytic carbon monoxide oxidation was used as a functional assay to demonstrate ligand removal from the gold surface for nanoparticles assembled on a high surface area support (fumed silica).
Read full abstract