Phosphorus (P) recovered from sludge-incinerated ash (SIA) could be applied to synthesize highly added-value products (FePO4 and LiFePO4) with in situ Fe in SIA. Indeed, LiFePO4 is a future of rechargeable batteries, which makes lithium (Li) highly needed. Alternatively, Li could also be extracted from concentrated brines to face a potential crisis of Li depletion on lands. Based on H3PO4 and Fe3+ co-extracted from the acidic leachate of SIA by tributyl phosphate (TBP), FePO4 (31.2 wt% Fe, 17.6 wt% P and the molar ratio of Fe/P = 0.98) was easily formed only adjusting pH of the stripping solution to 1.6. Interestingly, the organic phase from the first-stage co-extraction process of Fe3+ and H3PO4 could be utilized for Li-extraction from salt-lake brine, based on the TBP-FeCl3-kerosene system, and a good performance (78.7%) of Li-extraction and separation factors (β) (186.0–217.4) were obtained. Furthermore, the compounds with Li-extraction are complex, possibly LiFeCl4∙2TBP, in which Li+ could be stripped to form Li2CO3 by 4.0 M HCl (with a stripping rate up to 83%). Besides, Li2CO3 could also be obtained from desalinated brine by adsorption with manganese oxide ion sieve (HMO) and desorption with HCl. In the two cases, almost pure Li2CO3 products were obtained, up to 99.7 and 99.5 wt% Li2CO3 respectively, after further purification and concentration. Finally, recovered FePO4 and extracted Li2CO3 were synthesized for producing LiFePO4 that had a similar electrochemical property (69.5 and 77.8 mAh/g of the initial discharge capacity) to those synthesized from commercial raw materials.
Read full abstract