Rhizosphere has different chemical and biological properties from bulk soils. Information about copper (Cu) desorption characteristics in the rhizosphere soils is limited. The objectives of this study were to determine Cu desorption characteristics and the correlation of its parameters with Cu extracted by DTPA-TEA, AB-DTPA and Mehlich 3 in bulk and rhizosphere amended soils with sewage sludge (10 g of sewage sludge was added to 1 kg soil) under greenhouse conditions in a rhizobox. The kinetics of Cu desorption in the rhizosphere and bulk was determined by successive extraction with DTPA-TEA in a period of 1 to 504 h at 25 ± 1 °C. The results showed that Cu extracted using several chemical extractants in the rhizosphere were significantly (P < 0.05) lower than in the bulk amended soils. In addition, Cu extracted using successive extraction in the rhizosphere were significantly (P < 0.01) lower than in the bulk soils. The best model for describing extraction data for the bulk and rhizosphere soils was the parabolic diffusion equation. Desorption kinetics of Cu conformed fairly well to first order and power function models. The results indicated that Cu diffusion rate in the wheat rhizosphere soils lower than in the bulk soils. Cu desorption rate in parabolic diffusion ranged from 0.326 to 0.580 mg kg−1 h−1/2 in the bulk soils, while it ranged from 0.282 to 0.490 mg kg−1 h−1/2 in the rhizosphere soils. Significant correlation (P < 0.05) between determine R values of parabolic diffusion and Cu desorption during 504 h with extracted Cu using DTPA-TEA, AB-DTPA and Mehlich 3 were found in the bulk and the rhizosphere soils. The results of this research revealed that Cu desorption characteristics in the wheat rhizosphere soils are quite different from bulk soils amended with sewage sludge.
Read full abstract