Aero-engine is a complex thermal-mechanical system with strong nonlinearity, uncertainty, and time variation. Thus, it is crucial to design an effective controller for such a complex system to obtain the desired performances of the aero-engine. In recent years, model predictive control (MPC) has shown great potential in dealing with control problems with complex constraints of multi-variable systems, which has been applied to aero-engine control, achieving good results. Furthermore, the MPC strategy using an event-driven mechanism is good at balancing system resources and ensuring system control performances. In this paper, the problem of event-triggered MPC for aero-engine systems with bounded disturbances is studied. Firstly, an event-triggered strategy with a dynamic forced-trigger mechanism is proposed. Then, an MPC algorithm based on an event-triggered mechanism is designed. Finally, an application to the JT9D aero-engine model provided by T-MATS verifies the effectiveness of the designed algorithm. It is shown that the calculation load is significantly reduced, which proves the superiority of this method.
Read full abstract