In higher education, the design of learning environments is serious in prompting student well-being, engagement, and academic performance. Traditional classrooms often lack ergonomic consideration, leading to discomfort, increased physical strain, and reduced concentration. As education evolves, there is a growing need to apply ergonomic and biomechanical principles to create spaces that accommodate students’ diverse physical and cognitive needs. Despite the theoretical support for these interventions, there is limited empirical evidence on their practical impact in educational settings. This study addresses this gap by examining the effects of ergonomic and biomechanical adjustments on student outcomes in higher education. Utilizing a mixed-methods approach, the research was conducted across four universities with a diverse sample of 126 students. The interventions included adjusting furniture, optimized spatial layouts, and environmental adjustments to assess their influence on postural alignment, muscle activity, and engagement. Key findings revealed significant improvements: postural alignment showed an increase in spinal angle from 118° to 133° and a reduction in neck angle from 37° to 29°. Muscle activity, particularly in the neck and lower back, decreased by 40% and 44%, respectively. Additionally, self-reported comfort improved from a mean of 2.8 to 4.3, while physical strain decreased from 3.7 to 2.2. Engagement levels also improved, with scores rising from 3.1 to 4.5. These results underscore the importance of ergonomic design in promoting student well-being and fostering a more conducive learning environment, providing evidence-based recommendations for optimizing learning spaces in higher education.
Read full abstract