Fillet welded connections are frequently loaded eccentrically in shear with the externally applied load in the same plane as the weld group. While some current design tables are based on ultimate strengths, methods of analysis that incorrectly mix inelastic and elastic approaches are still used. These methods give conservative and variable margins of safety. Design standards generally use a lower-bound approach basing strengths on the longitudinal value neglecting, conservatively, the increase in strength for other directions of loading. The factored resistance of fillet welds, as a function of the direction of loading, is established based on ultimate strength expressions developed herein and using geometric, material variations, and test-to-predicted ratios reported in the literature. Factored resistances of eccentrically loaded fillet weld groups are established. These are basesd on the method of instantaneous centres, ultimate strengths, and the load–deformation expressions developed herein that are functions of the angle of loading. Also, statistical data on geometry, material variations, and the comparison of predicted strengths with the full-scale test results of others are used. Tables of design coefficients giving factored resistances for various eccentrically loaded fillet welded connections are developed. The coefficients, on the average, are essentially the same as those in current design tables. Key words: connections, design tables, eccentric, fillet welds, limit states, ultimate strength.