Under the backdrop of frequent emergencies, the rational layout of emergency service facilities (ESF) and the effective allocation of emergency supplies have emerged as crucial in determining the timeliness of post-disaster response. By adequately accounting for potential uncertainties and carrying out comprehensive pre-planning, the robustness of location-allocation decisions can be significantly improved. This paper delves into the ESF network design problem under demand uncertainty and formulates this problem as a two-stage robust optimization model. The presented model defines a generalized budget uncertainty set to capture victims’ uncertain demand and minimizes the sum of the costs involved in the two stages. The objective function integrates the input cost in the preparedness phase, the deprivation cost from the victims’ perspective and the environmental impact cost responding to sustainable development in the response phase, which respectively correspond to the comprehensive optimization of the deployment of ESF, the distribution of emergency supplies and the implementation of sustainable measures. Subsequently, we employ the column and constraint generation (C&CG) algorithm to solve the proposed model and take the COVID-19 epidemic in Wuhan as a case to verify the effectiveness of the model and algorithm. Finally, we examine the influence of demand uncertainty and environmental impact cost on the optimal solution, yielding valuable managerial insights.
Read full abstract