Determining the shear strength of soil is an important task in the design phase of construction project. This study puts forward an artificial intelligence (AI) solution to estimate this parameter of soil. The proposed approach is a hybrid AI model that integrates the least squares support vector machine (LSSVM) and the cuckoo search optimization (CSO). A dataset of 332 soil samples collected from the Trung Luong National Expressway Project in Viet Nam have been used for constructing and validating the AI model. The sample depth, sand percentage, loam percentage, clay percentage, moisture content, wet density of soil, specific gravity, liquid limit, plastic limit, plastic index, and liquid index are used as input variables to predict the output variable of shear strength. In the hybrid AI framework, LSSVM is employed to generalize the functional mapping that estimates the shear strength from the information provided by the aforementioned input variables. Since the model establishment of LSSVM requires a proper setting of the regularization and the kernel function parameters, the CSO algorithm is utilized to automatically determine these parameters. Experimental results show that the prediction accuracy of the hybrid method of LSSVM and CSO (RMSE = 0.082, MAPE = 14.841, and R2 = 0.885) is better than those of the benchmark approaches including the standard LSSVM, the artificial neural network, and the regression tree. Therefore, the proposed method is a promising alternative for assisting construction engineers in the task of soil shear strength estimation.
Read full abstract